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ABSTRACT
A variety of energy management and analytics techniques rely on
models of the power usage of a device over time. Unfortunately, the
models employed by these techniques are often highly simplistic,
such as modeling devices as simply being on with a fixed power
usage or off and consuming little power. As we show, even the
power usage of relatively simple devices exhibits much more com-
plexity than a simple on and off state. To address the problem, we
present a Non-Intrusive Model Derivation (NIMD) algorithm to au-
tomate modeling of residential electric loads using concepts from
power systems, statistics, and machine learning. NIMD automat-
ically derives a compact representation of the time-varying power
usage of any residential electrical load, including both the device’s
energy usage and its pattern of usage over time. Such models are
useful for a variety of analytics techniques, such as Non-Intrusive
Load Monitoring, that have relied on simple on-off models in the
past. We evaluate the accuracy of our models by comparing them
with both actual ground truth data, and against models that have
been designed manually by human experts. We show that models
derived via NIMD are comparable in accuracy to models built by
experts and closely approximate the ground truth data.

CCS Concepts
•Computing methodologies→ Model development and analy-
sis; Model verification and validation;

Keywords
Energy metering, Load modeling and analysis

1. INTRODUCTION
Buildings constitute nearly 40% of the total energy and 75% of

the total electricity consumption in advanced economies, exceed-
ing the usage from other large sectors, such as manufacturing and
transportation [14]. Since homes and residential buildings com-
prise nearly half of this usage, techniques to reduce the energy foot-
print of residential buildings has received significant attention in re-
cent years. Most of these techniques rely on a clear understanding
of what electrical loads are present in a home, how much electricity
is consumed by each load, and how electricity is used by residents
(e.g., their daily activities). An understanding of these factors is
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central to a broad swath of energy management and optimization
techniques, including automated demand-response, where certain
loads are turned off at the request of the grid, automated load con-
trol, where loads are automatically turned on or off to match user
activity, and energy analytics, where algorithms analyze energy us-
age data to derive and exploit behavioral insights to implement
various optimizations. Such techniques are becoming more com-
monplace with the growing popularity of Internet-of-Things (IoT)
devices being deployed in smart homes.

We argue that modeling of electrical loads is a fundamental build-
ing block that is essential for driving higher-level techniques such
as automated DR or energy analytics. Such models are compact
representations of the electrical usage patterns exhibited by a load
(e.g., a washing machine or TV) as well as temporal characteris-
tics that describe when the load is used by residents (e.g., resi-
dents watch TV every evening and do laundry on weekends). Stud-
ies have observed that simplistic or coarse-grain models can be
detrimental to the accuracy and effectiveness of higher-level ap-
proaches. For instance, Non-Intrusive Load Monitoring (NILM) is
a well-studied energy analytics technique that disaggregates overall
energy consumption data for a home into individual loads [12, 16,
1]. NILM-based analytics approaches have been used in a variety
of applications, such as inferring occupancy patterns [9, 15], reduc-
ing peak demand by opportunistic load scheduling [6], and learn-
ing thermostat schedules [13]. However, many NILM approaches
still model electrical loads as simple on-off devices, where the load
draws a fixed amount of power when turned on. As illustrated in
Figure 1, which depicts a washing machine, most residential loads
exhibit complex and varied power patterns that are distinct from
the simple on-off behavior. Hence, disaggregating loads based on
a simplistic and inaccurate understanding of a load’s behavior sig-
nificantly degrades the accuracy of higher-level techniques.

Despite its importance, empirical or analytic modeling of electri-
cal loads has received relatively little attention. Typically, common
devices, such as TVs, refrigerators, and computers, are only rated
(often conservatively) based on their maximum power, but include
no details of how the device consumes power over time. A recent
effort [3, 4] analyzed empirical data gathered from a large number
of residential loads to argue that only the simplest loads, such as
light bulbs, exhibit a simple on-off behavior and demonstrates that
most loads exhibit more complex exponential decays or growth,
bounded min-max, and cyclic patterns. While this work proposed
more complex analytic models to describe load behavior, it did not
propose any algorithms or approaches to derive (or construct) such
models automatically. That is, it required manual modeling of a
load by an expert before such a model could be used by higher-
level optimizations. However, manual modeling of highly complex
loads is time-consuming, and, for a load as complex as Figure 1,
potentially infeasible given the load’s complexity.

Thus, in this paper, we propose an automated modeling approach
for residential electrical loads. Our approach, which we refer to as



0 500 1000 1500

Time (seconds)

0

500

1000

1500

2000

2500

P
o
w

e
r 

(W
a
tt

)

Figure 1: Observed power usage of a washing machine

Non-Intrusive Model Derivation (NIMD), takes a trace of power
usage for an electrical load and automatically constructs an analyt-
ical model that captures both the device power characteristics and a
temporal usage model of the load. Our approach is fully automated
and does not require any manual intervention making it suitable for
a range of higher-level energy management and optimization tech-
niques. Our goal is to enable simple construction of highly detailed
power models for any device. We believe that such models could
be used for a wide range of applications. Given NIMD, users could
easily construct and post detailed models of device energy usage,
similar to the simple models provided by the crowd-sourced Power
Consumption Database1, which currently only records a static nor-
mal and standby power for devices but includes no details of how
they consume power over time. Alternatively, NIMD could pro-
vide device manufacturers a methodology for modeling their own
devices at manufacturing time, enabling them to release more de-
tailed power usage models than simple maximum power consump-
tion readings. In designing our Non-Intrusive Model Derivation
approach, we make the following contributions.
Modeling Challenges. We review common features in the power
usage of different types of loads based on their electrical character-
istics from prior work. We then highlight the challenges in automat-
ically modeling complex loads based their power usage data. Due
to these challenges, prior work assumes that human experts identify
the model type and manually construct it, even though such manual
modeling is both time-consuming and error-prone.
NIMD Algorithm. We present an approach to automatically de-
rive a load model solely from opaque time-series power data. Our
NIMD algorithm leverages a set of techniques from power sys-
tems, statistics and machine learning to first derive a device us-
age model that extracts load active periods, detects complex state
changes and cycles in the load operation, and parameterizes and
fits basic models onto loads to derive a compact representation of
a device’s power usage profile. Our algorithm then derives a usage
model that represents when and how often the device is used.
Model Evaluation. We evaluate the accuracy of our models by
comparing them with actual ground truth data, and against models
that have been designed manually by human experts. We show that
models derived via NIMD are comparable in accuracy to manually
designed models and closely approximate the ground truth.

The rest of this paper is structured as follows. Sections 2 and 3
present the problem statement and background on electrical loads.
Section 4 presents our NIMD approach. Sections 5 and 6 presents
our implementation and experimental results. We present related
work in Section 6 and conclude in Section 7.

2. PROBLEM STATEMENT
A typical home or residential building has dozens of electrical

1http://www.tpcdb.com/

loads of various diverse types and sizes. Some common loads in-
clude lights, HVAC equipment (such as AC and heaters), appli-
ances (such as a washing machine and dishwasher), and electronic
equipment (such as the TV, music system, phones, and chargers).
Different loads will exhibit different usage patterns. A few loads
such as a clock may be always on, but most loads are active only
when they are in use by their users and are off or on standby at
other times. When a load is active, it draws a certain amount of
power, which may vary over time based on its operation. Similarly,
when a load is inactive or in standby mode, it will draw either no
power or a small amount of standby power. In general, a load may
draw both real and reactive power, each with a distinct power pat-
tern. Real and reactive power derive in an AC system when the
voltage and current phase are not precisely aligned. As a result, at
some moments, the product of current and voltage will be negative,
causing power to flow back towards the generator. The portion of
productive power that flows toward the load is real power, while
the portion of power that flows back toward the generator is reac-
tive power. For simplicity, this paper focuses only on modeling real
power. However, our basic approach is easily extended to modeling
reactive power, which we leave for future work.

We assume that a load can be empirically monitored—for ex-
ample, using commonly available outlet sensors such as a Belkin
Wemo [22] or Kill-a-watt—which yields a trace of its power usage
over time. The goal of our work is to automatically derive a com-
pact model for the load based on its power data that captures and
describes its power usage over time. Intuitively, the raw power trace
of a load is itself a model, since it fully describes the load’s behav-
ior over time; however a raw trace is voluminous and not useful as
an input for higher-level energy optimizations. Thus, our goal is to
develop models that are compact analytic descriptions of a load’s
behavior. Any compact model will necessarily be an approximation
of the load’s raw power trace and there may be a tradeoff between
the accuracy of the model and the compactness of its representa-
tion. Given a load’s raw power trace, our goal is to automatically
derive a model that appropriately balances these tradeoffs.

Formally, a model for an electrical load has two key components:
(i) a device model that captures how the load behaves when active,
and (ii) a usage model that captures when and how frequently a load
is used. Note that the device model is inherent to the device and its
characteristics, while the usage model is inherent to the how users
use that load. In other words, a device model for a certain load is an
invariant across homes, while its usage model may vary from home
to home. For example, a certain model of a washing machine will
exhibit the same power usage characteristics when turned on (with
the same device model), but different users may choose to do their
laundry at different times and frequencies—daily or on weekends–
yielding different usage models.

Thus, given a raw power trace of a load X = (X1, X2, . . . Xk)
over k time units, where Xi denotes the (real or reactive) power
used by the load at time i, we seek to automatically learn (i) a
device model comprising a set of functions 〈f ([1..n])〉 that describe
its power usage over time when active, and (ii) a usage model that
comprise a set of probability distribution functions 〈g([1..m])〉 that
describe when and how frequently the load is activated.

3. CHARACTERIZING LOADS
In this section, we summarize the various kinds of electrical

loads found in residential environments. This understanding is crit-
ical for automated modeling of such loads. We also describe how
various kinds of electrical loads that are typically used by their
users. Our characterization builds on prior work on empirically
characterizing electrical loads [4, 3].
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(a) Lamp (Resistive) (b) CoffeeMaker (Resistive)

0 10 20 30 40 50

Time (seconds)

0

200

400

600

800

1000

1200

P
o
w

e
r 

(W
a
tt

)

0 100 200 300 400

Time (seconds)

0

200

400

600

800

1000

1200

1400

P
o
w

e
r 

(W
a
tt

)

(c) Vacuum Cleaner (Inductive) (d) Freezer (Inductive)
Figure 2: Examples of Resistive and Inductive loads
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(a) PC-Desktop (Non-linear) (b) LCD-TV (Non-linear)
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(c) Laundry Dryer (Composite) (d) Washingmachine (Composite)

Figure 3: Examples of Non-linear and Composite loads

3.1 Common Residential Load Types
Elementary power systems divides electrical loads into four ba-

sic types: resistive, inductive, capacitive and non-linear.
Resistive Loads: A pure resistive load is any device with a heat-

ing element where electrical energy is dissipated as heat or light.
Example residential devices that fall into this category include in-
candescent lights, toasters, ovens, electric stoves, space heaters,
and electric water heater (Figure 2). A resistive load draws power
such that its voltage and current waveforms are aligned and in phase.

Inductive loads: An inductive load is one where the current wave-
form lags the voltage waveform. The most common type of house-
hold inductive load is any device with a motor, such as fans, food
processors, vacuum cleaners, and any load with a compressor, such
as a refrigerator or air conditioner (see Figure 2). Typically, induc-
tive loads draw an initially high amount of power, followed by a
lower steady power draw [4]. The initial power “spike” is caused
by the higher in-rush current drawn by a motor when it starts up,
followed by a steady current to run the motor at a steady speed.

Capacitive loads: A capacitive load is one where the voltage
waveform lags the current waveform. An example capacitive load
is an “overexcited” synchronous motor that has significant current
in its rotor windings. Capacitive loads tend to be common inside
the core of the electric grid, e.g., long transmission lines, capacitor
banks for power factor correction, but they are largely absent in
residential environments. Given our focus on residential loads, we
ignore capacitive loads in the rest of this paper.

Non-linear loads: A non-linear load is one where the waveform
of the current does not follow the sinusoidal waveform of the ap-

plied voltage. This is caused by a switching action of the load,
resulting in a non-sinusoidal current draw. Common electronic de-
vices use switched-mode power supplies that can continuously vary
the current draw of the device to meet its needs, resulting in non-
linear loads. Such loads include any electronic device with a power
supply, such as a TV, music system, computer, phones, chargers
of various sorts; these power supplies are capable of supplying a
variable amount of current to the load (see Figure 3).

Composite loads: While many simple electrical loads fall into
one of the above three categories (resistive, inductive, non-linear),
many household devices comprise one or more of these base load
types, resulting in a more complex compound load. For instance, a
refrigerator has a compressor (an inductive load) and a light bulb (a
resistive load) that turns on when the door is open. A dishwasher
has a motor (an inductive load), a heating element (a resistive load)
to heat water, and a pump (also an inductive load) to drain water.
Such loads may activate their individual component loads in se-
quence or parallel and the resulting power draw is the sum of the
power drawn by each component load (see Figure 3).

3.2 Characterizing Usage
Residential loads can be classified as a background loads and

foreground loads. A background load is one that typically runs
in the background without active user intervention. A refrigerator
is the most common background load that is always on and con-
trolled by an internal thermostat that periodically turns on the com-
pressor. Typical background loads exhibit periodic behavior, where
they turn on for some duration and then become inactive until the
next period. Thermostat-controlled equipment such as a central
AC, furnace, tank-based water heaters, are all examples of back-
ground loads that also exhibit periodic usage behavior. The period
may vary over time due to changes in the environment i.e. longer
period of an AC due to higher outside temperature.

Foreground loads are ones that are actively controlled by a user—
the user turns them on when needed and turns them off when done.
The usage of foreground loads depends on the type of the load and
how users operate them in their daily routines. Each load will have
a usage frequency that governs how frequently it is turned on by
the user (e.g., daily, weekly) and the usage may have time-of-day,
day-of-the-week or seasonal patterns associated with them. For ex-
ample, lights may be used in the evenings when it is dark; laundry
may typically be done on weekends, heaters may only be used in
the winter. The frequency of use and temporal characteristics gov-
ern the usage patterns of both foreground and background loads.

3.3 Manual modeling of loads
A recent effort [3, 4] empirically characterized electrical loads

from their power traces and demonstrated that common loads can
be modeled analytically. In particular, the study showed that the
empirically observed behavior of each basic load type can be mod-
eled using one of four analytic equations:

On-Off Model: In this case, the load draws a fixed power Pon
when active and zero or a small amount of standby power Poff
when inactive. Simple resistive loads were found to exhibit such
binary on-off behavior. Figures 2(a) and (b) shows examples of the
power usage of resistive loads with on-off behavior.

On-Off Decay Model: In this case, the power usage of the load
exhibits an exponential decay behavior, represented as follows.

X(t) =

 pactive + (ppeak − pactive)e−λt, 0 ≤ t < tactive

Xoff , t ≥ tactive
(1)
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(a) Coffee (Daily) (b) Refrigerator (Daily)
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(c) Clothes Dryer (Weekly) (d) Dishwasher (Weekly)

Figure 4: Examples of loads with Usage characteristics

Here, ppeak represents the initial surge power, pactive is the sta-
ble power level and λ captures the rate of decay. Many inductive
loads consisting of AC motors were shown to exhibit this behavior.
Higher-powered resistive loads were also shown to exhibit an ex-
ponential decay, but with a less prominent peak and a gentle decay.
Figure 2(c) and (d) shows examples of the power usage of inductive
loads with a spike and exponential decay behavior.

On-Off Growth Model: Some loads exhibit a growth behavior
i.e. a logarithmic growth in power usage. We model such devices
using a logarithmic function (inverse of the exponential function)
that starts with a power level pbase with a growth parameter λ. We
refer to such loads as an on-off growth model:

X(t) =

 pbase + λ · ln t, 0 < t < tactive

Xoff , t ≥ tactive
(2)

Stable Min-Max and Random Range Models: All non-linear loads
exhibit a degree of random behavior and the observed behavior was
characterized as a random walk between an upper and lower bound
(referred to as random range) or a stable power draw with random
upward or downward deviation (referred to as a stable min-max
model). The random variations were modeled using a uniform dis-
tribution. Electronic loads with switched-mode power supplies,
such as TVs, phone chargers, and computers were shown to ex-
hibit this behavior. Figures 3(a) and (b) shows two examples of
non-linear loads with random variations.

Cyclic Model: Any load that exhibits repeating patterns was
characterized as cyclic with a certain period. All other complex
loads that included multiple types of basic loads were character-
ized as a linear combination of above loads. Figures 3(c) and (d)
show examples of cyclic loads that repeat and a composite load that
embeds the operation of multiple basic loads.

The previous study [3, 4] involved manual modeling of electri-
cal loads by an expert. It assumed that the load type (e.g., TV,
washing machine, AC) was known a priori and that a human ex-
pert could map these loads onto one of the above analytic models
based on their knowledge of whether the load was resistive, induc-
tive, or non-linear. The parameters of the analytic model chosen
for the load were then manually derived. This human expertise was
particularly important to model complex loads such as a washing
machine (see Figure 1) where human expertise is used to model
each type of power variation observed in the trace. Thus, at best,

this method lends itself to a supervised approach where a human
expert uses her domain knowledge of the type of device to label the
type of model to be used for the load, and parameters of the model
are then manually derived using the empirical trace data.

The problem addressed in this work is more challenging. We
assume that our system is provided with a power trace with no a
priori information of what type of device it was gathered from or
any knowledge of the load type. We seek to automatically (i.e.,
unsupervised) derive the “best” analytic description that explains
the observed behavior. Further, we seek to automatically derive
both the device model and the usage model, while prior work [3, 4]
only dealt with device models and not how the device was used in
a particular environment. As discussed earlier, such analytic load
models are potentially useful in a wide range of scenarios.

Extensions: While prior work [4] employed a uniform distribu-
tion to model random power fluctuations in non-linear loads, our
work uses the more general Gamma and LogGamma distribu-
tions to model stable min and stable max behavior with random
deviations. The two models are shown below.

X(t) ∼ Gamma(α, loc, scale), 0 < t < tactive (3)

X(t) ∼ LogGamma(α, loc, scale), 0 < t < tactive (4)

Here, α, loc and scale denote the shape, location and scale pa-
rameters for the two distributions. Further, for random range de-
vices a normal distribution could be used. Apart from these, more
load types can be used with future appliances having varied char-
acteristics as they get added to residential buildings.

4. NIMD ALGORITHM
In this section, we propose our Non-Intrusive Model Derivation

(NIMD) approach for automated (unsupervised) modeling of elec-
trical loads. Broadly our approach has two parts: (i) device mod-
eling, where we learn the power usage behavior of the load when
it is active, and (ii) usage modeling, where we learn how the users
use the load in a particular environment. Although, both compo-
nents are necessary to model the overall load behavior, they are
independent and can be used on their own for specific use-cases. In
what follows, we first describe our basic approach, followed by the
details of the device and usage modeling.

4.1 Basic Approach
Figure 5 depicts the high-level approach for NIMD device mod-

eling. Given a raw power trace of a load, NIMD’s approach to
constructing a device model involves the following steps:

Step 1. Active period extraction: For a given trace, the first step
is to partition the trace into active and inactive periods. An active
period is one where the load is operating and drawing power, while
an inactive period is one where the load is turned off or in standby
mode (and not in active use). A long power trace will consist of
alternating periods of active and inactive use, and hence, this step
extracts active periods from the trace.

Step 2. State change detection via change point detection: Dur-
ing each active period, a load may transition through different ac-
tive states and exhibit a different type of power variations in each
state as it transitions from one active state to another. In this step,
our technique uses a change detection algorithm to determine these
state transitions, which manifest as “significant” changes in power
behavior. By further partitioning an active period at each state tran-
sition, we obtain a set of trace segments corresponding to different
active states within each active period.
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Figure 5: Pipeline of steps involved in devce modeling of an electrical load

Step 3: Cycle detection: Next our technique compares the power
patterns across states to determine if the behavior is cyclic. If a
repeating pattern of state transitions is found, then a more compact
model can be constructed by analyzing a repeating cycle rather than
all trace segments.

Step 4: Model fitting: In this key step, our technique tries to fit
the trace segment extracted from each state onto various analytic
models described in Section 3. The best fit is then chosen, which
yields both the load type seen during that active state and the pa-
rameters of the model describing that observed behavior.

Step 5: Device Model Generation: The previous step yields a
sequence of analytic models, one for each active phase, as well as
cyclic dependencies, if any, for each active period. We repeat this
process for each active period present in the trace. The final step
then is to catalog the sequence of analytic functions for the overall
model as well as the parameters of the various analytic functions
found by our technique.

Usage Modeling: While the previous steps construct a device
model from a raw power trace, we now describe the high-level ap-
proach for deriving a usage mode for the load.

Intuitively, the usage model involves determining how frequently
a load is used and when it is used (e.g., mornings, evenings, week-
ends, summer, etc.) To derive the usage, consider the first step of
the device modeling, namely active period extraction. In this step,
the trace is partitioned into active and inactive periods. In doing so,
we obtain, over the period of the trace, start times of each active
period, and the lengths of each active (“on”) and inactive (“off”)
periods. This data is used to construct a usage model as follows:
Step 1: Our technique first finds the shortest duration (e.g., a day,
week, month or year) over which the load exhibits “similar” be-
havior. In order to derive a compact model, this is the period over
which the usage of the device repeats in a statistically meaningful
manner and captures the seasonality of the usage.
Step 2: Next, our technique constructs probability distributions for
the start times and the active and inactive period lengths for the
above duration. The joint probability distribution of these variables
yields the usage model.

Together, device and usage models together describe a compact
model for residential electrical loads. Below, we discuss the key
steps in device and usage modeling in detail.

4.2 Device Modeling
Figure 5 depicts the key steps for automated device modeling,

which are outlined in the previous section. We discuss each step in
more detail below.

4.2.1 Active Period Extraction
As noted earlier, each load alternates between active and inac-

tive periods. During its inactive period, where the load is off or in
standby mode, the load will either consume zero power or a small
amount of standby power (also known as “vampire” power [11]).
Hence, given a trace of raw power usage, inactive periods can be

determined by sequentially scanning the trace for periods where
the power usage is less than a low threshold ε for durations longer
than a threshold interval τ . Once inactive periods are labeled in the
trace, the remaining periods are, by definition, active periods. This
step partitions the power trace of the load into segments of active
and inactive periods.

4.2.2 State Change Detection
When a load is active, it may transition between different active

states. Each state may represent transitions between different ba-
sic loads that are components of the overall load, or may represent
different active states of a basic load. Each state manifests itself in
terms of a different power usage pattern. For example, a washing
machine cycle may involve wash, rinse, and spin cycles, where dif-
ferent components of the washer (i.e., basic loads) activate in turn.
Similarly, during the spin cycle, the motor may transition through
different speeds, each of which is a distinct state with a different
power usage level.

Since each active state has a distinct and observable power us-
age pattern, our technique uses a change point detection algorithm
to determine when significant changes (i.e., transitions) occur in
the observed power usage. Change point detection (also known
as change detection) is a well-known technique that is used for
anomaly detection [18, 21]. However, since traditional change
detection techniques are not well suited to our problem, we devise
a new change detection algorithm to detect state transition points
within an active period.

Our energy-specific change point detection algorithm is based
on the notion of approximate entropy. Intuitively, entropy is a mea-
sure of the unpredictability of information content. In the context
of time series data, Approximate Entropy (ApEn) is a technique to
quantify unpredictability of fluctuations in data [19]. Our algo-
rithm operates over a sliding window of the power time series for
an active period. For each position of the sliding window, it com-
putes the approximate entropy H over a the window of length φ.
Next, we need to detect large changes in approximate entropy as the
window slides over the time series. To do so, we employ the Canny
Edge Detection algorithm [7], a technique from computer vision,
to detect “edges” where there are sudden changes in the entropy
values H . Further, we remove certain edges that are within a pre-
defined range δ of each other. Doing so yields instants in the power
trace where significant changes in approximate entropy (which rep-
resent active state changes) are observed. Algorithm 1 describes the
pseudocode of our change detection algorithm2 and Figure 6 illus-
trates the different steps in the algorithm: (i) approximate entropy
computed over a sliding window, (ii) canny edge detection, and (iii)
removing nearby edges for a washing machine power trace.

Given the change points, our technique then partitions each ac-

2The ApEn computation requires us to set two additional param-
eters (sequence length, set to M = φ/4 and filtering level, set to
R = .2 · σ(X)) that are not shown in the pseudocode.
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Figure 6: Approximate Entropy based change detection using
canny edge detection on a washing machine trace

tive period into segments, where each segment represents the power
usage observed in a specific active state.

Algorithm 1 Changepoint detection to mark active state changes
using Approximate Entropy
1: procedure ENTROPY-CHANGEPOINT(X,φ, δ)
2: Initialize:H ← []
3: H.append(ApEn(X[i : i+ φ])) ∀i ∈ [1..|X|]− φ]
4: εall ← CannyEdge1D(H)
5: ε← RemoveCloseEdges(εall, δ)
6: return ε

4.2.3 Cycle Detection
Certain loads may transition through repeating cycles of active

states, yielding cyclic behavior that manifests itself as repeating
patterns of observed power usage. Hence, rather than modeling the
load as a linear sequence of active states, we search for repeating
sub-sequences of active states that represent cyclic behavior within
each active period or repeating patterns within an active state. We
use autocorrelation, a standard time series technique, to discover
repeating power patterns within an active period. The autocorre-
lation of a periodic signal will exhibit a local maxima at the time
multiples of the original signal’s underlying period. Thus, we com-
pute the autocorrelation of the active period time series for different
lag values to determine cycles. To illustrate this process, we choose
a portion of the washing machine trace and show the corresponding
autocorrelation values for the identified cycles (see Figure 7).

4.2.4 Model Fitting
After extracting a time series segment for each active state within

an active period, our technique then turns to the key problem of
deriving an analytic model that describes the power usage varia-
tions observed within each state. Recall from Section 3 that a basic
load can exhibit on-off, on-off decay, on-off growth, stable-min or
stable-max behavior, depending on whether it is resistive, inductive
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Figure 7: Autocorrelation plot of a time segement in an active
duration of a device

or non-linear. We use analytic closed form equations to capture the
behavior of the first three types of loads and use probability dis-
tributions to capture the behavior exhibited by latter two types of
non-linear loads. The model fitting process involves fitting a curve
onto the time series data for the first three load types and fitting a
distribution onto the data for the latter two. Since we have no a
priori knowledge of the load type, our approach tries to fit different
types of curves or distribution and chooses the best fit.

First, to determine whether to fit a curve or a distribution, our
technique determines if there are noticeable trends in the data (i.e.,
on-off, on-off decay or growth) or if it is derived from a random
process (stable min or stable max). This is achieved by differentiat-
ing the time series of the load and observing the change in standard
deviation. Our insight is that the standard deviation of the differen-
tiated time series should decrease for trending data and increase for
data derived from a random process. This step enables our tech-
nique to determine whether to fit a curve or fit a distribution for
each time series segment corresponding to an active state.

In the former case, our technique then attempts to fit a linear
segment, an exponential decay curve and logarithmic growth curve
onto the data using non-linear least squares method. In the latter
case, our technique attempts to fit both the gamma and the log-
gamma distributions onto the data using the Maximum Likelihood
Estimation (MLE) method. In either case, we choose the curve
or the distribution that is the best fit in terms of explaining the
observed data. Specifically we use goodness-of-fit measures, dis-
cussed in Section 6, to choose the best fit. The output of this step is
a classification of each active state as a particular type of base load
and the parameters of the derived model (i.e., curve or distribution)
for that base load. Figure 8 illustrates the on-off decay fit on the
part of the time segment shown in Figure 7.

4.2.5 Device Model Generation
The previous step derives a unique model for each non-repeating

active state within an active period and repeats this process for each
active period in the raw time series. This yields a collection of
models and our final step derives an overall device model from this
collection of base models. This is achieved by creating a multi-
tuple record comprising models for each active period. Each tuple
contains information on the state number (in a given active period),
period (or 0 if no period is found), the chosen label for the model
(on-off decay, stable max etc.), the fit parameters (Pstable, Ppeak, λ
and time length for on-off decay), and overall segment length. For
the segment shown in Figure 7, for instance, the tuple 〈Segment
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Peak no. Pstable Ppeak λ timelength

1 339.78 897.85 0.33 12

2 342.68 719.03 0.22 12

3 366.87 805.28 0.25 12

Mean 349.77 807.38 0.27 12

Table 1: Variation in parameters of the active duration of a
device shown as a frequency table with mean value.

Number, Period, Model, Fit Parameters, Segment length 〉 is given
by - 〈11, 20, On− off Decay, ∗params, 200〉.

In the case of cycles within an active period or when the same
active state is observed across active periods, the same basic model
will be found repeatedly. However, due to the power behavior of
electrical loads, there may be slight differences in the observed
power values or patterns for different observed instances of the
same state. Hence, the computed parameters of the load will vary
slightly from one instance of the state to another. Our overall model
can capture the variations at different degrees of accuracy. A more
accurate description is less compact but captures the observed vari-
ations more faithfully. Conversely, a more compact model is less
accurate and also more approximate. Currently, our technique sup-
ports three representations for capturing parameter variations across
repeating instances of the same active state: (i) a single mean value
for each parameter across all instances (the most concise represen-
tation, but also the least precise), (ii) a frequency table, or (iii) a
probability density as multiple dimensions in a parameter hyper-
space (the most precise). Table 1 displays the frequency table and
the mean value for all the parameters for the time segment shown in
Figure 7. Note that a single mean value for each model parameter
will lose subtle variations exhibited by the load, while a probabil-
ity density captures the likelihood of all the possible values of the
different parameters of a model.

4.3 Usage Modeling
The usage model captures how a load is used within a certain

environment by its users. Regardless of whether the load is a fore-
ground load or a background load, the usage of a load is captured
by how frequently it activates and when. Hence, the usage patterns
can be captured by three parameters: (i) start time, (ii) length of an
active period, and (iii) length of an inactive period. Note that the
three parameters are not independent—the end of an inactive period
defines the start time of the next active period. Nevertheless deriv-
ing all three parameters enables us to capture both the frequency
of usage as well as seasonal dependencies (e.g., load is only active

in the evenings, or only on weekends, or only in the summer etc).
Figure 9 shows energy consumption (in kWh) in the form of a heat
map for an AC, a clothes dryer and a refrigerator for each hour of
the day for an entire year. The figure shows that the AC is used pre-
dominantly in the summer, while the refrigerator is active multiple
times every single day on account of being an "always-on" load.
The dryer is typically used only once or twice a week.

Step 1: To capture various usage patterns, our technique first de-
termines the smallest time window (e.g., day, week, month or year)
over which the load exhibits statistically significant usage varia-
tions. To do so, we start with the largest time window present in
the trace (e.g., a year or a month) and compute the frequency distri-
bution of start times over this time window. We then compute the
coefficient of variation for the start time frequency ν, given by

cv =
σ(ν)

µ(ν)
(5)

We then recursively proceed to the next smaller time window
(e.g., pick a week if the previous window was a month) and repeat
the process of computing the frequency distribution of start times
over this window and the coefficient of variation (COV) until the
COV is found to be greater than 1. In doing so, we pick the smallest
time window (i.e., the most compact temporal representation) to
model usage while ensuring that we do not miss any statistically
significant variations in usage of the load. In the example shown in
Figure 9, this would yield periods of a day and a week, respectively,
for the refrigerator and the dryer. Although, seasonal changes are
captured using this, we do not directly incorporate temperature as
a parameter in our model generation.

Step 2: Given the appropriate time window over which usage
should be modeled, our technique then uses the start times and
lengths of active and inactive periods extracted from the power se-
ries trace to compute (i) a histogram of start times over the time
window, and (ii) histograms of active and inactive period lengths.
We then use the Kernel Density Estimation (KDE) approach to
compute a smooth probability distribution over each histogram.
KDE is a non-parametric method for data smoothing when one
needs to reason about the population based on limited samples.
This process yields three probability distribution functions for the
start times, active and inactive period lengths, respectively. The
joint probability distribution function over these three parameters
represents the usage model for the load.

5. NIMD IMPLEMENTATION
We implemented a prototype of our NIMD algorithm in python

using the SciPy stack. SciPy stack has a collection of powerful
scientific computing libraries for data processing. Our prototype
takes a raw power trace as input and outputs a device model and
the usage model for it using techniques described in the previous
section. The overall model fitting component and Kernel Density
Estimation uses specific modules from the SciPy library. For calcu-
lating Approximate Entropy, we used PyEEG [2], an open source
python module for data processing for EEG data. For other statis-
tical mechanisms, we used standard python libraries.

The model derived from the trace can then be employed for a
number of higher level energy algorithms. In addition, the model,
which is a compact description of the device, can be also used to
create a synthetic traces that “faithfully” mimic the load’s actual
power behavior, as discussed next.

6. EVALUATION
In this section, we evaluate the efficacy of our NIMD approach
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Figure 9: Energy consumption of devices in kWh over different time of the day and day of the year

Name #Devices Duration Frequency Region

AMPds 24 2 years 1 Minute Canada

Smart* 26 3 months 1 second USA

Tracebase 158 few days 1 second Germany

Table 2: Datasets used for evaluation
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Figure 11: Model learnt for a composite load

for device and usage modeling.
Datasets: We used device-level electrical data from three publicly
available datasets: AMPds [17], Smart* [5], and Tracebase [20].
Table 2 describes the key characteristics of these datasets. AMDds
is the smallest of the three datasets, but has load data for two years.
Tracebase is the most extensive dataset in terms of number of loads,
while the Smart* has appliance-level data at a 1-second resolution
over a period of 3 months.

Metrics: To analytically evaluate the goodness of fit for on-
off, on-off decay or on-off growth models described earlier, we
use Mean Absolute Percentage Error (MAPE), a standard statis-
tical measure of accuracy expressed as a percentage value. The
formula for calculating MAPE for a given device with power con-
sumption data represented as Xdata

[1..k] and the fitted model Xfit
[1..k] is

given below.

MAPE =
100

n
·
K∑
k=1

∣∣∣∣∣ Xdata
k −Xfit

k

Mean(Xdata
[1..K])

∣∣∣∣∣ (6)

For stable min and stable max models, we use Kullback-Leibler
(KL) divergence, a measure of the difference between two prob-
ability distributions. KL divergence of probability distribution Q
from P is symbolized as DKL(P ||Q). However, KL divergence is
not a metric as it is not symmetric. In practice, probability P is the
distribution of the data andQ is the proposed approximation for P .

In our case, Q is the Gamma distribution for stable min and the
LogGamma distribution for stable max. The lower the MAPE or
KL divergence values, better is the fit.

DKL(P ||Q) =
∑
i

P (i) · log P (i)

Q(i)
(7)

6.1 Device Modeling

6.1.1 Model Fitting
Figure 10 illustrates the performance of model fit on the 4 ap-

pliances from the Smart* dataset. These appliances are - (a) a Re-
frigerator, (b) an AC, (c) a CRT-Monitor, and (d) a LCD-TV fitted
with on-off decay, on-off growth, stable min, and stable max mod-
els respectively. The learnt model parameters are also shown in
each figure. Figure 10 (a) and (b) show the MAPE values for the
fitted model on the data. For the two examples shown for curve
fits in Figure 10(a) and (b), we get a MAPE (error) of 2.4% and
1.02%. Figure 10 (c) and (d) show the KL divergence of data from
Gamma and LogGamma distribution respectively. These fig-
ures also show the KL divergence of data for a baseline Normal
distribution fit. Intuitively, KL divergence is the penalty on com-
pressing data to be represented as the proposed distribution. The
figure shows that KL divergence of the our proposed Gamma and
LogGamma distributions is a more than a factor of 2 lower than
the baseline Normal distribution. Finally, Figure 11 shows the
overall model learnt for a washing machine, a composite load.

6.1.2 Accuracy of the models
To evaluate the accuracy of model fit, we ran it on a number of

appliance loads of various types in the tracebase dataset. In Fig-
ure 12(a), we have a violin plot showing the MAPE values for 5
refrigerators over curve fit on several active periods of the device.
The horizontal stick in these plots represents each underlying dat-
apoint corresponding to a measurement for an active period. The
thickness of the graphs for different devices corresponding to the
MAPE values on the y-axis is indicative of the frequency distri-
bution of the datapoints. Overall, more than 1000 active periods
spread across 5 devices are shown in this figure. MAPE values for
2 of the refrigerators are almost below 3%, whereas it is between
1-7% for 2 other refrigerators. For one refrigerator, we found a
comparitively much poorer fit in the range of 6-10%. Figure 12(b)
shows an appliance type-wise view of the error in the curve fits for
4 inductive (Refrigerator) or resistive (Kettle, Lamp, Toaster) load
types. The graph represents more than 1300 active period data for
7 Lamps, 6 Kettles and 2 Toasters along with the 5 refrigerators
shown in (a). As shown, the resistive loads have MAPE values
below 4%.
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Figure 10: Basic Load Models for On-off Decay, On-off Growth, Stable min, and Stable max with fitted models
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Figure 12: Goodness of Fit measures for different appliances from Tracebase dataset
As discussed earlier, for distribution fit we use a relative measure

called KL divergence. Here, again we compare our proposed dis-
tributions to a baseline Normal distribution. Figure 12(c) shows
the violin plots for more than 200 active periods spread across 8
LCD-TVs. For 5 devices the KL divergence improves by modeling
the active period traces as a LogGamma distribution by a factor
of 1.5. For the other 3 devices, there is no appreciable difference
between the two distributions. Figure 12(d) represents appliance
type-wise spread of KL divergence for non-linear loads such as
TFT-Monitor, Desktop-PC, and Laptop along with LCD-TVs rep-
resenting more than 1000 active periods. Except for LCD-TVs, we
do not find any improvement (or worsening) in KL divergence by
model fitting proposed one-tailed distributions over Normal dis-
tribution.

6.1.3 Descriptiveness of the Model
The model parameters of an electrical load are not static and the

variation in them must be captured for building a realistic model.
Figure 13 shows the probability density over the 3 dimensions of
the parameter space (ppeak, pstable, and λ) obtained from applying
NIMD algorithm on the different active periods of a refrigerator
from the TraceBase dataset. We observe that the 3 parameters vary
from one active period to the other. Figure 13 illustrates how a
probability density is more precise than a frequency distribution
table (shown as a scatter plot) as it provides a smooth parameter
space with just a few data samples.

6.2 Usage Modeling
To evaluate the efficacy of the usage modeling, we used loads

from the AMPds dataset since it contains consumption data for a
period of 2 years. With an adequate amount of data, we can choose
the smallest time window which captures the usage variations of
a device. In the section 4, we discussed how the joint probability
distribution of start times over an optimal window and the length
of the active and inactive periods capture the usage model of any
device. Since the joint probability of these 3 variables is difficult to
plot, we use Table 3 to show the mean and the standard deviation
of a number of active periods in a time window (optimally selected
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Figure 13: Variation in parameters over several active periods

from the data) with the length of the active and inactive periods.
The time window selected for the different devices matches the in-
tuitive values that would have been manually selected for the differ-
ent devices. For example, our models indicate that the approximate
duty cycle for the refrigerator is around 36 minutes (average active
+ inactive period lengths). Our usage models also capture that de-
vices such as Dryers, Washing machines and Dishwashers are used
3 to 6 times per week.

6.3 Automated versus Manual Modeling
To compare our automated approach with models manually de-

rived by experts, we obtained load data and manually derived mod-
els reported in [4] from the authors. We used NIDM to derive
models for the loads and then compare NIMD’s models with the
manually derived ones. Figure 14 shows a comparison between the
manual and the automated modeling approaches. We were able to
classify each of these 4 appliances with the correct basic load type.
Further, the learnt parameters were very close to the manual model-
ing values shown in [4]. The error associated with both manual and
automated modeling was lesser than 1% in all 4 cases. Thus, our
automated approach derives models comparable to human-derived
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Figure 14: Comparison of automated v/s manual modeling
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Figure 15: Synthetic trace generated using out models.

fitted models using domain knowledge (e.g., load type).

6.4 Case study: Synthetic Trace Generation
While our models can be used for many energy management

tasks, they can also be used to derive a synthetic power trace that is
statistically similar to the original trace. For this, we need to sam-
ple the usage distributions to compute start times of each active and
inactive durations. To derive the parameters such that the synthetic
trace mimic the original load usage, we need to draw samples from
joint probability distribution computed by the usage model. To do
so, we employ a state-of-the-art Markov Chain Monte Carlo sam-
pling method called the Metropolis-Hastings Algorithm [10] that
generates a sequence of samples through a random walk over the
sample space. Once the start time is computed, the usage model,
which is itself a sequence of analytic models for each active state,
is then used to create a power trace for that active period. In the
case of non-linear loads, where the device models are distributions,
we sample the distribution to create a power trace. At the end of an
active period, we set the power to the standby power level for the
inactive period. The process repeats for the next start period.

Figure 15 shows the original load trace and the sample trace gen-
erated synthetically from the first sample taken from real data after
104 iterations. By "replaying" the usage and device models, we
observe that the synthetic trace exhibits similar power usage as the
original load trace.

Device (Window)
Start times/interval Active length Inactive length

µ σ µ σ µ σ

Dryer(W) 4.2 2.2 41.8 11.7 1891 2220

Washer(W) 5.2 2.7 50.9 24.3 1557.1 2114.7

Dishwasher(W) 3.7 1.3 75.8 39.6 2034 2160

Fridge(D) 39.6 4.0 13.5 9.8 22.5 9.7

TV(D) 1.9 1.0 67.7 47.9 522.8 501.5

WOE(M) 3.6 1.8 105.9 399.6 8978 7901

Table 3: Usage Patterns for different devices with Daily (D),
Weekly (W) or Monthly (M) window

7. RELATED WORK
Due to the large-scale deployment of smart meters by utilities,

there has been a resurgence in interest in energy analytics tech-
niques, such as NILM, in both academia [12, 1, 16] and indus-
try [8]. NILM-based energy analytics have been used in differ-
ent scenarios, such as opportunistic load scheduling for capping
peak demand [6], learning thermostats schedule [13], etc. How-
ever, prior work on NILM generally uses simple on-off models for
electrical loads, which, as we show, are highly inaccurate. As a
result, these techniques have limitations on their accuracy.

Thus, an important challenge is the ability to analytically model
the behavior of a variety of residential loads. Earlier work [3, 4]
has demonstrated that most appliances map onto few basic types
that exhibit a compact set of features. This prior work shows how
to manually construct models for the basic load types, but does not
show how to automatically derive models, especially for complex
loads that are time-consuming to manually model.

In this work, we propose an algorithm to automatically derive
a model for each appliance from its empirical measurements. Our
technique is analogous to disaggregation where an energy usage
trace of a compound load is automatically disaggregated into a set
of basic load types and the parameters of each basic load type are
automatically learned. Further, we also model the interaction of
devices with residents to build a usage model for them. Finally, our
NIMD techniques adapt and extend multiple methods from prob-
ability, statistics, and information theory to the energy analytics
domain. These methods provide a strong theoretical framework for
automatically deriving models of electrical load behavior.

8. CONCLUSIONS
In this paper, we presented a new approach for automated un-

supervised derivation of the device and usage models of residen-
tial loads. We presented our NIMD approach that uses concepts
from power systems, statistics, and machine learning to automate
loads modeling. Our experimental evaluation showed that our au-
tomated models are within 1% of the ground truth and very close
to those derived manually by experts and yield good fits for a range
of loads. A current limitation of our approach is that they only
handle sequential composite loads, where the base loads activate in
sequence, and do not handle parallel composite loads. As future
work, we will study methods that combine NILM disaggregation
with our NIMD approach to handling parallel composite loads.
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